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Stress dependency on ultrasonic wave 
propagation velocity 
Part 1 Analysis by the Eulerian viewpoint of ultrasonic wave 
velocity in the uniformly deformed isotropic solid 
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The velocity of an ultrasonic wave propagating in the uniformly deformed isotropic solid was 
analysed by the Eulerian viewpoint. The pseudo elastic coefficient (PEC) was used to solve 
the equation of motion of the elastic wave under finite deformation. The infinitesimal displace- 
ment gradients are connected to the stress increments by the PEC. Using the PEC and the 
partial differential equation of motion, the velocity of ultrasonic wave was quantitatively 
related to applied stress, moreover, the stress dependence on longitudinal and transverse wave 
velocities propagating in the direction parallel or perpendicular to the uniaxial tensile direction 
could be cleared. Consequently, the Murnaghan's third order elastic constants can be calcu- 
lated by precisely measuring the uniaxial tensile stress and ultrasonic wave velocity. 

Nomencla ture  
al, a2, a3 

Xl, X~, x~ 

Xl~ X2~ X3 

U , ,  g2 ,  g 3 

Ul ~ u2~ u 3 
o~/oxj 
~/exj, {au/Ox}; 

gij ~ eij 

Ae U 
e~ 
S~ 
I,,I2, I3 
Qo, Q, AO 

Q0q } 
2, # 
l, m, n 

Coordinate of the non-deformed K 
state L 
Coordinate of the statically and 6 o 
finitely deformed state A;j o 
Coordinate of the state where dyn- /~, Iz and ~0 
amic and infinitesimal deforma- 
tions are superposed on the finitely I s 
deformed state ~0, a0 
Finite displacement 
Infinitesimal displacement 
Finite displacement gradient 
Infinitesimal displacement gradient Aa0, {Aa}; 
and its abbreviated formulation 
Eulerian strain in the statically M,i~;, M,j 
and finitely deformed state and 
the strain in the state where dyn- J 
amic infinitesimal deformations 
are superposed co, k 
Strain increment 
1/2(aui/~3xj + 8u//axi) el, e t, 13 
1/2(0UffeXj + gUJc3X~) 
Strain invariants 
Density in the non-deformed state V, s 
and deformed state and density E 
increment respectively v 
Free energy per unit volume ~, fl . . . . .  
Lam6 constants 
Murnaghan's third order elastic 
constants 

= - 2 + 3 l + m  
= 22 + 2#  + m 

Kronecker's delta 
Cofactor of matrix [e;j] 
Strain invariants and cofactor in 
the finitely deformed state 

= Sn + $22+ $33 
Stress in the finitely deformed 
state and the stress in the state 
where dynamic and infinitesimal 
deformations are superposed 
Stress increments and their 
abbreviated formulation 
Pseudo elastic coefficients and 
their abbreviated formulation 
Jacobian matrix in the finitely 
deformed state 
Angular frequency and wave 
number 
Longitudinal and transverse strain 
to the tensile axis and strain by 
hydrostatic pressure 
Ultrasonic wave velocity 
Young's modulus 
Poisson's ratio 
Greek subscript letters indicate 
the summation over all of 1, 2 
and 3, for example e;~e~j = e~e~j + 
ei2e2j --~ ei3e3j 
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1. Introduct ion 
The relationship between stress and strain in the infini- 
tesimal deformed solid can be described by second 
order elastic (SOE) constants. However it is nonlinear 
in the finite deformation and needs higher order elastic 
constants in addition to the SOE ones. The higher 
order elastic constants were founded by Murnaghan 
[1]. He applied the mass conservation's law and the 
principle of virtual work to the law of thermodynamical 
energy conservation on the isotropic solids, and derived 
the relation between applied stress and free energy in 
the finite deformed state. This was used to make a 
connection between the stress and strain, because the 
free energy consisted of a polynominal expression 
of the strains with the SOE and TOE (third order 
elastic) constants. Moreover, Murnaghan estimated 
the higher order elastic terms from Bridgman's data of 
high pressure experiments [2, 3]. 

Meanwhile, Lazarus [4] estimated the higher order 
terms by using the change of the ultrasonic propagat- 
ing velocity in materials under applied stress. Among 
the higher order elastic constants, the TOE constants 
are most important to study the properties of solids, 
not only practically but also theoretically. Hearmon 
[5] derived the TOE constant of cubic crystals from 
Lazarus's data. 

The higher order elastic constants derived by 
Murnaghan depend upon the experimental data in the 
isothermal and static conditions, however those given 
by the ultrasonic wave are usually obtained through 
the combined processes of both states of isothermal 
applied stress and adiabatic ultrasonic wave propaga- 
tion. The difference between the isothermal elastic 
constants and the adiabatic ones is small [6, 7], so that 
the problem is not discussed in this paper. 

Hearmon [5], and Hughes and Kelly [8] derived 
theoretically the stress dependence of the ultrasonic 
propagating velocity using the TOE constants of 
cubic crystal, and isotropic solids, respectively. Since 
then, many researchers have developed these problems 
[9-14]. Recently the acoustic birefraction theory and 
the acoustoelastic method, which was analogous to 
optoelastic method, were proposed [15], and theoreti- 
cal work concerning the stress dependence on surface 
wave propagating velocity was also carried out [16]. 
These theories were applied to the measurement of the 
TOE constants as well as stress analyses [17, 18]. 

In the elastic theory, the stress and the equation 
of motion are based on the strain and free energy. 
There are two ways of thinking about the strains. One 
is the Eulerian viewpoint where the coordinates after 
deformation are taken as a reference, and the coordi- 
nates before deformation are differentiated using the 
reference ones. This is called the Eulerian Strain. 

The other is the Lagrangian viewpoint, which is the 
reciprocal to that of the Eulerian strain. It is possible 
to neglect the difference between them when the defor- 
mation is infinitesimal, but impossible when defor- 
mation becomes finite. Consequently the elastic con- 
stants should also be distinguished between the 
Eulerian and the Lagrangian formulae because they 
are coefficients of the strain in the polynominal expres- 
sion for the free energy. This results in a difference 

between the values of the Eulerian and Lagrangian 
TOE constants, as the expression of strain corre- 
sponding to a deformation is not the same. The 
measurement and theory of the TOE constants by 
Hearmon and other workers were based on the 
equation of motion in the Lagrangian viewpoint. 

In order to get the Eulerian TOE constants, the 
relationship of the stress dependence on the ultra- 
sonic propagating velocity has to be derived from the 
equation of motion in the Euterian formula. But this 
equation of motion is expressed by total differentia- 
tion [19], and the analysis is not easy. We supposed a 
pseudo elastic coefficient (PEC) to represent the elas- 
tic wave of infinitesimal displacement propagating in 
the statically and finitely deformed solid. The infini- 
tesimal displacement gradients can be linearly con- 
nected with the stress increments by the PEC. 

As a result of using the PEC, the equation obtained 
is not expressed by the total differential term but is 
only the partial differential formula, even if the 
Eulerian formula approach was used for the analysis. 
Using the above process, the secular equation is con- 
ducted and stress dependence on the elastic wave 
propagating velocity could be derived. 

2. A s p e c t s  o f  t h e o r y  
We used the coordinate systems corresponding to 
each of the three states to treat the elastic wave of 
infinitesimal deformation propagating in the finitely 
deformed solid [20]. The first coordinate system cor- 
responds to the undeformed state, the second to the 
statically, finitely deformed state, and the third to the 
state when dynamical infinitesimal deformation is 
superposed on the finite deformation of the second 
state. 

The equation of motion in the Eulerian formula 
becomes very simple, because the stress tensors are the 
symmetric Causy tensors, but it is difficult to derive 
the secular equation from the differential time, since 
those terms become the total differential time terms in 
the total differential formula. Therefore we tried to 
derive a solution from the equation of motion of 
infinitesimal deformation based on the static, finite 
deformation state. The total differential terms in the 
equation of motion of infinitesimal deformation can 
be replaced by partial differential formulae [2t] and 
this makes the analysis easy. We attempted to linearly 
connect the stress increments with the strain incre- 
ments by the infinitesimal deformation, however, only 
the strain increments, not the stress increments could 
be expressed in a linear fashion. We then adopted the 
PEC and the infinitesimal displacement gradients 
instead of the strain increments. 

Both the infinitesimal displacement gradients and 
the stress increments have nine components, accord- 
ingly the PEC has 81 components, but if the stress 
increments are symmetrical they become six com- 
ponents in the abbreviated style, then the PEC has 54 
components. 

The differential time term in the equation of motion 
for the ultrasonic wave superposed on the finite defor- 
mation state can be approximately written in the par- 
tial differential equation. Using the PEC and the 
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partial differential equation, the Eulerian analysis 
became easy and simple. 

3. Pseudo elastic coefficients 
3.1. Strain increment and infinitesimal 

displacement gradient 
The coordinates and displacements corresponding 
to the three states of deformation mentioned above 
are described as follows using rectangular Cartesian 
coordinates. 

(a) In the case of non-deformed state; coordinate 

(al, a2, a3) 
(b) In the case of statically and finitely deformed 

state; coordinate (X1, X2, X3), finite displacement 
(01,  02, 03) = ( X  l -- a,, )(2 - a2, X3 - a3) 

(c) In the case of the state where dynamic and infini- 
tesimal deformations are superposed on the finitely 
deformed state; coordinate (xl, x~, x3), infinitesimal dis- 
placement (ul, /12, /13) ~- (Xl -- "~1, X2 -- X2, x3 -- X3) 

The strain ~u in the statically and finitely deformed 
state and the strain 8 u in the state where dynamic and 
infinitesimal deformations are superposed are given as 
follows by the Eulerian formula, 

1 ( ~?Ui c~Uj c3U~ ~U, 

1 (o(g~ + u,) ,~(g,. + u:) 
8~j = 2 ~ Ox: + ~x~ 

,XG + u~) ~(G + u,)~ 
Ox~ ~x; 

(1) 

where subscripts i, j, c¢ and fl take either of 1, 2 and 3. 
We assume that subscript Greek letters indicate 
summation, but that of Roman letters does not. The 
state of finite deformation is expressed by sign ° above 
the letter. These descriptions are consistently used in 
this paper. The strain increment A8 u produced at the 
finitely deformed state is obtained from Equation 1, 
and written as Equation 2. The derivation of this 
equation stands on the following assumptions, 

(a) terms equal or higher than second order of the 
infinitesimal displacement gradient #u~/Ox: can be 
neglected, 

(b) terms equal or higher than third order products 
of du~/Ox: and the finite displacement gradient ~ U,/~?Xj 
can be neglected, since 0G/0Xj is very small in the 
elastic limit. 

, O u ~  _ ~ ~u~ 
ASu = 8 u -  gu = 8 i j -  Si~-~x; ~ (2) 

5;: and S u are defined as a matter of convenience of 
calculation, and either of them is symmetrical, hence 
written as 

and 

I (OU/  ~ Uj.'] 
s. = ~ -Yg~ + ax, :  

S u is the first order term of the strain at the finitely 
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deformed state. 8~j corresponds to the strain produced 
by an infinitesimal deformation superposed on the 
finitely deformed state. A~H and A~23 are shown as 
typical examples; 

A~I1 63Ul ( 63Ul 63U2 63t) 3 '~ 
- 2 S . l ?Tx  + s.2.+ 

l(Ou  ou,  

&~ au, a< &'~l 
-- 822 ~x3 --1- 533 ~ '1- 812 ~x3 '~- 813 e x 2 /  

(3) 

A822, A~33 , Ag31 and Ael2 can be given by replacing the 
subscripts of Aeu, A822, A823 and As31 with 2, 3 and 1 
instead of 1, 2, and 3, respectively. 

3.2. Stress  and  strain relat ion 
The free energy Q04~ per unit volume of the deformed 
isotropic elastic solids is expressed by Murnaghan [1] 
as follows, 

Oo(a = AI, + 2 + 21~ti2_ 2#12 
2 

+ lI 3 + mI112 + nI3 (4) 

where Q0 is the density in non-deformed state. I1, 12 
and/3 are the strain invariants, written as follows; 

I1 : ell ~- 522 "q- 833 

/3 

/3 

~__ 522 523 

~32 ~33 

Ell ~12 

821 522 

531 832 

+ 533 g31 

513 Ell 

513 

~23 

~33 

Jr- ~11 812 

521 ~22 

Coefficient A in Equation 4 becomes zero at equilib- 
rium because there is no strain and no applied force, 
zero strain indicates a local minimum of ~b. 

In this equation, 2 and # are Lam4 constants (SOE 
constants), l, m and n are the TOE constants defined 
by Murnaghan. Stress is also derived by Murnaghan 
as follows, 

ou = 0 - 2G (5) 

where 0 is the density of the deformed state. ~3q~/& u 
can be obtained from Equation 4, and a u is expressed 
as follows, by neglecting the third order term of strain, 

cr u = (211 + KI~ + mI2)6 u +  (2 /~ -  LI,)8 u 

- 4~e~G: + nA u (6) 

K = - 2  + 3 l +  m, L = 22 + 2# + m 

where, 6~: is Kronecker's delta and A,j is the (i j )  cofactor 

of matrix [8u]. 
The details of this process are described in Appen- 

dix A. 



3.3. Relat ionship between stress increments 
and infinitesimal displacement gradients 

Stress increment Aa~j is derived from Equation 6 as 

Aa u = a , j -  az = {2(1, - / l )  + K ( # -  i?) 

+ m(I2 - /~)}6 u 4- 2#(% - ~u) 

- L ( I ~ %  - i ! ~ v )  - 4#(~,=% - ~,fi=s) 

+ n(Ao - £ v )  

= 5u[{2 + (2K 4- m)Is}I; 

-- 2 2 ~ x  ~ + mg~= See -- LSij I, 

, + (2# - LZ).,~ - 2~ & ~ + 2o=~ 

+ Sj~ ~ + 2~,'~ + nA(&j) (7) 

I!' = G 

where, ~-~, it (or ]2) and Z~¢jdenote stress, strain invari- 
ants and cofactor at finitely deformed state, respect- 
ively. Equation 7 can be rewritten by use of the above 
described assumption (a) and (b), then &an and Ac% 
are 

Aall = {,~ q- 2# -- 2(22 + # -- 31 -- m)/~ 

-- 2(22 + 7# + m)Su}  Out 
~x~ 

+ {2 - 2(22 - 3 1 -  m)I~ - 2#Su 

+ (22 + m + n)$33} ¢3u2 
~x2 

+ {2 -- 2(22 -- 3 l -  m)Is 

+ (22 + m + n)$22 } ~u3 

- (22 + rn + n)$23 \~x3 

- (22 + 8# + m)S31 0u3 
c3x! 

- (22 + 4# + r e ) S 3 1 -  

- (22 + 4# + m)Sl2 

- (22 + 8# + m ) S l 2 -  

Ao'23 = -- (22 + 2# + m + 

-- (22  + 8 #  + m)$23 

+ { # -  ( 2 +  3 # +  

63Ul 
c3x3 

OUl 

~?u 2 
c3x 1 

n ) & 3  - -  

ctx2 + 

+ 

- -  2 # SI !  

+ & x 2 j  

Ox~ 

(8) 

4- / 2 #  -- Sll - 2#$33 

0u3 ~;'3 - ( 2 # - ; ) S , 2 ~ - - x  - ( 4 # - ; ) S , 2  

~?ul _ au__ 2 

I~ = S , + & 2 + & 3  (9) 

The stress increments ZXa22 , Z~a33 , AO'3, and Aa~2 would 
be given by rewriting the subscripts of Aa~, A0"22 , Z~0"23 
and Aa3~, respectively, in the same way for strain 
increments. The stress increments A% can be reduced 
to six components because of  their symmetry. Appen- 
dix B shows the derivation of  the Equations 8 and 9. 

We may express the stress increments as a linear 
combination of the infinitesimal displacement gradi- 
ents, and let Muk ~, pseudo elastic coefficients, be their 
coefficients, so as to get the following equations, 

Ou~ 
Aa/j = Mij~ ~ (i0) 

and this is rewritten by the following abbreviated 
style, 

{A~}, = [ M , j  

i =  1 , 2 , 3  . . . . . .  6 ~ =  1 , 2 , 3  . . . . . .  9 

= A o . ,  {a h = Ao22, = a o , ,  

= A < , ,  = a o , , ,  {a }0 = 

Ox--;' = Ox--; 

01) 
for example, 

Ml~ = X + 2 # - -  2(22 + /x-- 3 l - -  m)I~ 

-- 2(22 + 7# + m)Su 

4. The relat ionship b e t w e e n  the 
ul t rasonic w a v e  propagat ing  veloci ty  
and stress 

4.1. The equat ion of mot ion in a f ini tely 
deformed state 

We now consider the situation where the elastic wave 
of infinitesimal deformation is propagating in the 
finitely deformed solids. When there is no body force, 
the equation of motion of Eulerian formula is given 
as, 

d2(g/  -t- ui) Oai~ O~i~ (~(Aai~) 
~o dt 2 - ¢?x~ - ax~ + c~x------~ (12) 
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where, 0 denotes the density of the finitely deformed 
state, and AQ means the density increment from infini- 
tesimal deformation. Since U, is a static displacement, 
its differentiation with respect to time can be elimin- 
ated in Equation 12. The difference between the total 
and partial differential forms of  ui can be neglected 
due to the infinitesimal displacement, then the left 
hand side of Equation 12 may be written a s  ~2ui/Ot2. 
If we assume a~j on the right hand side is static and 
spacially uniform, O&u/0Xj can be eliminated and O&u/ 
axj is also eliminated by the following transformation, 

#xj OL axj 

Therefore, only the stress increment is valid on the 
right hand side of Equation 12 and the equation of 
motion is, 

° O2Ui 6q(A°'i~) = Mi: @ t~2u# (13) 
O ~ - ax~ ax, Ox~ 

The density ~ has the following relationship with the 
density 00 in the non-deformed state, 

f = Oo/det J (14) 

j = [aX/aa A (15) 

J is the Jacobian matrix in the finitely deformed state. 
The higher than second order terms of the finite 
displacement gradient could be neglected in the 
expression of the stress increments. Accordingly the 
Jacobian matrix can be also approximated by the 
following expression in the equation of motion, 

d e t J  - 1 + /s (16) 

Finally, from the all above mentioned matters, Equa- 
tion 12 is rewritten as follows, 

0u, = (1 + I,) O(A0-,~) 
0 ?7 ax----7- 

- - -  (1 + L)M,=/~, a2ue (17) 
Ox~8x. t 

4.2. The u l t rasonic  w a v e  p r o p a g a t i n g  ve loc i ty  
under uniaxial tensile deformation 

Now, the ultrasonic wave propagating velocity under 
the state of uniaxial tensile deformation is derived as 
shown in Fig. 1. 

(a) The longitudinal plane wave propagating in the 
direction of x-axis. In this case, the dynamic displace- 
ment contains only u~, and it is expressed as 

ul = A' exp [i(cot - kx l ) ]  (18) 

where A' is the amplitude, e) the angular frequency 
and k the wave number. From Equations 11 to 16 and 
using the condition of u 2 = u 3 = 0, Equation 19 and 
20 are given as 

(~2Ul (19) O2Ul = (1 + e t +  2et)Mn ~0 -SU 

therefore 

00V12 = 2 + 2 # -  ex(72 + 1 4 # -  6/) 

- 2et(32 - 6 1 -  2m) (20) 
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X 2 

X 1 

f - - - - - -  
Wave W a v e  

# ' ~ '  "h _ 

] 
TenC:~sile 
d i r e c t i o n  

Figure 1 Direc t ion  o f  the  u l t r a son ic  wave  p r o p a g a t i o n s  a n d  tensile 
d e f o r m a t i o n .  T h e  s ta te  o f  un iax ia l  tensile d e f o r m a t i o n ;  ~u = at, 

$22 = ~33 = gt; g23 = $31 = ~12 = 0; (TII = app l i ed  stress;  #22 = 

where the right hand sides are due to stress increm- 
ents, and we can assume au - Su because the higher 
than second order terms of OU~/a~ may be neglected. 
V, is phase velocity and can be written as V~ 2 = co2/k 2. 
The first subscript of V~ denotes the direction of ultra- 
sonic wave propagation, and the second one denotes 
the direction of polarization. If  strains et and et almost 
satisfy the relation &u = E ' e r  and et = -vet ,  the 
ultrasonic wave propagating velocity VI~ is given as 

o 

o-ll [72 + 14# - 6l QoVj] = 2 + 2 # -  ~ -  

-- 2v(32 - 6 l -  2m)] (21) 

where E is Young's modulus 

d- n #(32 + 2p) 
e, (2 + #) 

v is Poisson's ratio 

V - -  
et 2 
e t 2(2 + #) 

(b) The longitudinal and transverse wave propagat- 
ing velocity with various combinations of propagation 
and polarization directions. We obtain the following 
results, 

° I  m 0-11 /~ + 2# + -- 
Oo Vx~ = # - T 2 

E 
f i l l  m 

eo ] = # - - f  

_ 
°I 0-11 

00Vz~ = /t + 2# - ~ 32 - 6 l -  2m 

- 2v(52 + 7# - 61 - rn)] 

°[ ] f i l l  m n 
00V2~ = # -  -~- 2 + ~- + ~ -  v(22 + 6# + m) 

(22) 

4.3. The ultrasonic wave propagating velocity 
in a deformed solid under hydrostatic 
pressure 

In this state the strains and stresses are given as 



8n - (32 + 2#)s 

0"23 = 0"3l = (712 = 0 

g l l  ~ 822 = 833 ~ 8 ,  

1323 = 831 = g12 = 0 

The dynamic displacement of a longitudinal plane 
wave is 

ul = A' exp [i(wt - kxO] (23) 

The propagating velocity V n obtained from PEC and 
Mu are related as 

00Vl 2 = (1 + 38)Mu 

d-]l 
= 2 + 2 #  

32 + 2# 

x (132 + 1 4 # -  1 8 / -  4m) (24) 

Similarly, the transverse wave propagating velocity 
V12 is given as 

OoV12 = (1 + 3s)M69 

d'll - -  (32 + 6# + 2~m + ½n) (25) 
= /z 32 + 2# 

5. C o n c l u s i o n  
The velocity of an ultrasonic wave propagating in the 
uniformly deformed isotropic solid was analysed by 
the Eulerian viewpoint. The coordinate for the analy- 
sis was given to each of three states, namely, the 
undeformed state, the statically finitely deformed 
state, and the state of dynamic infinitesimal deforma- 
tion superposed on the finitely deformed state. 

The pseudo elastic coefficient was inducted to solve 
the equation of motion of elastic wave under finite 
deformation. The infinitesimal displacement gradients 
are connected to the stress increments by the PEC. 
The PEC has 54 components in asymmetry and con- 
sists of the second order and third order elastic con- 
stants and the strains of finite deformation. 

Using the PEC and partial differential equation of 
motion, the velocity of the ultrasonic wave was quan- 
titatively related to applied stress, moreover, the stress 
dependence on longitudinal and transverse wave vel- 
ocities propagating in the direction parallel or perpen- 
dicular to the uniaxial tensile direction could be 
cleared. Consequently, Murnaghan's third order elas- 
tic constants can be calculated by precisely measuring 
the uniaxial tensile stress and ultrasonic wave velocity. 

where 

A p p e n d i x  A 
Equation 6 can be derived by the following process; 
using Equation 4 

. 1 ( 2  + 2# 1 2 _  2#12 + ll 3 + mllI2 + hi3) 
O o _ 2 

(4) 

a l l _  6j~,~I2 _ 1,6;,--~u 
OSji #Sji 
aI, 
aG = 4, 

The derivative of Equation 4 by the strain is 

OA = L [(~ji{ki ' -Jr- ( 3 / +  m)I~ + /7//;2} 
&j~ Qo 

+ (2~ - m6)8 o + nAj,] (A1) 

The ratio of the density at the deformed state to the 
undeformed one is 

--~ = 1 - I, + 212 - 4/3 (A2) 
~0 

When Equations are substituted for Equation 5, we 
obtain Equation 6. 

A p p e n d i x  B 
Derivation of the stress increments Aa11, Aft23. We 
obtain the strain increments from Equation 2 as 
follows, 

a<j = 8 , j -  4j = e , j -  &-~xj ax, 

0ufl 
AI~ = I~ - [l = I~1 - 2S~ 

A(I]) = I ~ - [ ~  = 2/fl'i 
! 

A(Ile u) = Ile u - [l~j = SJ'1 + Ls~j 

(2) 

A(&i) = A . - A l l  
/ , ! z 

= 9 2 2 ~ 3 3  + 8 3 3 e 2 2  - -  8 2 3 s 3 2  - -  $ 3 2 9 2 3  

(m)  

A(A23) = A23 -- ~23 

- -  S 1 1 ~ 2  - -  $32~'11 -1- $ 1 2 ~ 3 1  @- S3i~"12 

(B2) 

11' = G 

From the above formulae for the strain increments 
and Equation 8, the stress increments are 

Ao,i = 5 u [{2 + (2k + m)Is}I', 

- 2)v~-~x ~ + me~ S~ - L S J I  

+ (2# - LI,)e;j - 2# {S~ \ox~ + 2~;j 

+ s .  \ & ,  + 2G + ha(&,) (B3) 

as in Equation 7. 
Aa H and Ao23 are given by rewriting subscripts of ij 

in the Equation B3 to 11 or 23 and substituting by the 
Equations B1 and B2. 
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